Creating a SmartGWT application using
atmosphere-jersey (2.4.6)

Description

Setting up
Setting up libraries

Setting up project structure

The atmosphere GWT API (wrapper)
The API
Using the API

The Jersey resource

Changes in the application

Other configuration issues

Testing

Description

SmartGWT already has a real-time streaming technology we call SmartGWT Messaging, but there are other
frameworks/technologies that you can use to achieve the same goal. One of such frameworks is the Atmosphere real-time
streaming framework

https://github.com/Atmosphere/atmosphere

We have taken the Atmosphere real-time streaming framework to demonstrate integrating it with a SmartGWT grid. For that,

we have modified the sample code here, and have replicated using Atmosphere:
http://www.smartclient.com/smartgwtee/showcase/#messaging_stock_quotes

The application has been deployed and tested on glassfish 3.1.2, with Google Plugin for Eclipse and also standalone running

codeserver from command line via Maven.

Setting up

Setting up libraries

As we are using maven for this project, there is only a few values to setup. We rely on Maven plugin to download the required
version of the smartgwt libraries. In order to install the smartgwt libraries in your local maven repository, execute the maven
goal “isc:install”, from command line or from eclipse, before you compile and run the project for the first time.

$ mvn isc:install

You need to execute that goal each time you need to link your project to a different version of SmartGWT.
To change to a specific version of SGWT you must redefine these properties in the provided pom.xml:

smartgwt.version The smartgwt version (included p|d suffix).
l.e.6.0p
smartgwt.date Smartgwt build date, in “yyyy-mm-dd” format.

l.e. 2016-09-21

smartgwt.build Smartgwt build number, in “X.Y-(p|d)yyyymmdd” format.
l.e. 6.0-p20160921

You can start codeserver, in order to test the application in SuperDev Mode, from command line:

$ mvn package gwt:run

To test navigate to http://127.0.0.1:8888/indexSD.html

https://www.odesk.com/leaving-odesk?ref=https%253A%252F%252Fgithub.com%252FAtmosphere%252Fatmosphere
https://www.odesk.com/leaving-odesk?ref=http%253A%252F%252Fwww.smartclient.com%252Fsmartgwtee%252Fshowcase%252F%2523messaging_stock_quotes
http://github.smartclient.com/isc-maven-plugin/
http://127.0.0.1:8888/indexSD.html

Setting up project structure
When you uncompress the contents of the provided zip, you will find the following folder structure, that follows the proposed
structure for a maven web project:
¥ (= srC
¥ [= main
P (= java
¥ (= webapp
» =ds
B (= WEB-INF
[Z] index.htm
[Z] indexs0.htm

The java folder contains the required java source code, both server (jersey resource, servlet), client (the SmartGWT
application) and the new API that provides access from GWT to the atmosphere javascript API.

The webapp/ds directory contains the demo data needed to initialize the application. It was copied from the original
SmartGWT demo application.

The webapp/WEB-INF folder contains the deployment descriptor web.xml, described later in this document.

The webapp folder contains two html landing pages: besides the standard index.html we provide indexSD.html, a version that
explicitly includes the code to load the smartclient js modules as required by the Super Dev mode, so navigate to this page
instead of the standard index.html when testing from eclipse or from the codeserver.

You can compile the project inside eclipse with the provided pom. xml file, or call directly mvn from command line, invoking the
“package” phase. If you are going to use eclipse and the Google Plugin for Eclipse we recommend you to configure the
M2Eclipse plugin, this will maintain the eclipse build path always synchronized (do not forget to check “Resolve dependencies
from Workspace projects” in the Maven properties tab of your eclipse project).

The atmosphere GWT API (wrapper)

Atmosphere 2.4 provides a wrapper around the jQuery.atmosphere. js library that allows GWT 2.0 applications to access the
library. But, unfortunately, it is only provided as binary, and as it has been compiled against GWT version 2.6, it cannot be
used with GWT>2.6. So, we have implemented our own wrapper class, providing a simple set of wrapper methods to access
the javascript library. The source code for this wrapper is provided as part of this sample.

The wrapper is coded into a separate GWT module (isoatmos), under the com.isomorphic.atmosphere package. That way it can
be packaged and used in different projects.

The API
The API provides these two methods:
JavaScriptObject subscribe(Configurator This method is used from the client to subscribe to server events.
cfg) A configurator is a java object used to configure the subscription, that also

allows to register callback methods, as described below.

Once a client is subscribed to a channel, each time the client receives a
message sent from the server to our client, the atmosphere framework will
call the “onMessage()” callback method, that we registered when we
configured the connection.

The subscribe() method returns a Javascript object, the socket, that can
be used to push data to server at any moment.

void pushData(JavaScriptObject socket, This method allows to send data to the server from our GWT application at
JSONObject data) any moment.

The socket object is the one that we obtained when we subscribed to the

channel with the subscribe() method.

The data field is a JSON Object, it may contain whatever we want to send

to the server encapsulated as a json object.

void unsubscribe() Stop receiving messages from Atmosphere.

The configurator class provides these methods:

setService()

The identifier of the service set when we configured the
AtmosphereServlet. By default, we set it to “jersey/rpc”, and can be
changed in web.xml deployment descriptor.

setChannelId() The identifier of the channel to use. Can be a generic identifier, of we want
to be notified of all messages sent by the server, or a specific one, so we
will only receive messages addressed to us.

setTransport() Transport protocol. We use streaming by default.

setFallbackTransport()

In case the selected transport protocol is not available in both sides (client
and server), the framework will negotiate to find the next common protocol.
This is our preferred protocol in case the first one is not available. By
default is long-polling.

setMessageHandler(
IAtmosphereMessageHandler handler)

IAtmosphereMessageHandler is an interface that all MessageHandlers must
implement. The interface only has one method, onMessage (JavaScriptobject
response). Once the handler is registered, the method will be invoked each
time a new message arrives to the client.

The 1AtmosphereMessageHandler interface only provides one method:

void onMessage(String response)

This is a callback method, that is invoked by the framework when a new
message is received on our GWT 2.0 application from the server.

The received response is a Stringified JSON object. To retrieve the original
object, you can use “JSONParser”, as in this example:

JSONObject jsonResponse =
(JSONObject) JSONParser.parselLenient(response);
JSONArray jsonStockData = (JSONArray)jsonResponse.get("stockData");

Using the API

The first step is to subscribe the application to receive events from the server. For that, we must use a configurator object.
The channelld can be an empty or constant String. All clients with the same channelld will receive the same broadcasted
messages. If we want to receive server events addressed to our client, we must provide a unique channelld.

Together with the channelld, we setup the transport methods, and also provide a class implementing the
AtmosphereMessageHandler interface. The class just implements one method, onMessage (), that is going to be called by the

framework each time a server event is received.

final String channelld = "myChannel";

Configurator configurator = new Configurator();

configurator.setService("jersey/rpc");

configurator.setChannelId(channelld);

configurator.setTransport(Configurator.TRANSPORT_STREAMING);
configurator.setFallbackTransport(Configurator.TRANSPORT_LONG_POLLING);
configurator.setMessageHandler(new SampleMessageHandler());

// Start listening remote events

AtmosphereWrapper.subscribe(configurator);

This is an example of an AtmosphereMessageHandler class:

public class SampleMessageHandler implements IAtmosphereMessageHandler {

protected SampleMessageHandler() {
b

@Override

public final void onMessage(JavaScriptObject response) {
logger.log(“Message received”);

}

The Jersey resource

This is part of the server side of the application, and in our application will be used only to register the subscription of a new
client. We only need to define one method here, the one to accept the subscription (with the @GET annotation, as the
atmosphere “socket.subscribe()” method sends a GET request).

public class JerseyRpc {
@GET
@Produces("application/json")
public SuspendResponse<String> suspend() {

¥

In order to respond ONLY to the clients that subscribed to this channel, when a client subscribes to the jersey resource, the
client generates a channel identifier for this client. This identifier arrives as part of the path used to locate the jersey resource
during the registration. So we must configure our Jersey resource this way:

@Path("/rpc/{channelid}")

public class JerseyRpc {

private
@PathParam("channelid")

Changes in the application

The GWT EntryPoint class that we are using is basically the same that you can find here. The main changes that we had to do
to the application follows.

First, we have included the code to subscribe the application to the atmosphere channel that we defined in our jersey
resource. In this example we are adding a value to the channelld, the startParameter, based on current time.

public void onModuleLoad() {
final long startParameter = System.currentTimeMillis();

final String channelld = "channel." + startParameter;

Configurator configurator = new Configurator();
configurator.setService("jersey/rpc");
configurator.setChannelId(channelld);
configurator.setTransport(Configurator.TRANSPORT_STREAMING);
configurator.setFallbackTransport(Configurator.TRANSPORT_LONG_POLLING);
configurator.setMessageHandler(new MyMessageHandler());

// Start listening remote events
AtmosphereWrapper.subscribe(configurator);

The 1AtmosphereMessageHandler implemetation provided, AtmosphereMessageHandler, just calls the original updateStockQuotes()
method.

public class AtmosphereMessageHandler implements IAtmosphereMessageHandler {
protected AtmosphereMessageHandler() {

}

@Override

public final void onMessage(String response) {
AtmosphereSample.updateStockQuotes(response);

¥

http://www.smartclient.com/smartgwtee/showcase/#messaging_stock_quotes

The second change was applied to the servlet that processes the request to start sending back data, the stockQuotesserviet,
to replace the calls to the SmartGWT Messaging service with calls to atmosphere service. First we need to retrieve the
atmosphere channel that we want to communicate to, based on the startParameter:

public void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

ServletContext servletContext = ServletContextFactory.getDefault().getServletContext();
BroadcasterFactory bf =

(BroadcasterFactory) servletContext.getAttribute("org.atmosphere.cpr.BroadcasterFactory");
Broadcaster channel = bf.lookup(channelld);

Then, after we have created the data block to be sent to the client as we did before, we broadcast an atmosphere message to
this channel.

public void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

JsonResponse response = new JsonResponse(stockData);
channel.broadcast(response);

To encapsulate the data we created a class, JsonResponse, that just holds the stockData (We have added the
@XmlRootElement annotation to assure that both json and XML can be generated, but it is not mandatory):

@XmlRootElement
public class JsonResponse {
public List<Object[]> stockData;

public JsonResponse() {}

public JsonResponse(List<Object[]> stockData) {
this.stockData = stockData;

}

The third change we have done in the legacy application is in the method that receives the updates from the server,
updateStockQuotes(). The main change we made there was to adapt the format of the received data to the required format,
because, as we are receiving raw json data, we have to do some transformation.

public static void updateStockQuotes(String responseBody) {
JavaScriptObject jsoResponseBody = JSON.decode(responseBody);
Map<?,?> rp = (Map<?,?>) JSOHelper.convertToJava(jsoResponseBody);
List<List<?>> stockData = (List<List<?>>) rp.get("stockData");

Other configuration issues

We need to take into account one configuration file: web.xml, where we need to configure the jersey resource. Also, we have
had to configure the StockQuotesServlet.

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>
<servlet>
<description>AtmosphereServlet</description>
<servlet-name>AtmosphereServlet</servlet-name>
<servlet-class>org.atmosphere.cpr.AtmosphereServlet</servlet-class>
<init-param>
<param-name>com.sun.jersey.config.property.packages</param-name>
<param-value>com.isomorphic.examples.atmosphere.server, org.codehaus.jackson.jaxrs</param-value>
</init-param>

<init-param>
<param-name>org.atmosphere.websocket.messageContentType</param-name>
<param-value>application/json</param-value>
</init-param>
</servlet>
<servlet>
<servlet-name>StockQuotesServlet</servlet-name>
<servlet-class>com.isomorphic.isoatmosjersey.server.StockQuotesServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>AtmosphereServlet</servlet-name>
<url-pattern>/jersey/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>StockQuotesServlet</servlet-name>
<url-pattern>/examples/StockQuotes/generate</url-pattern>
</servlet-mapping>
</web-app>

Testing

To test the application, package and deploy it to your preferred application server. In case you want to test it with glassfish,
you only need to execute the ant build.xml file provided, or manually “gwt compile” the project, then zip the “war” folder into a
war file, for instance isoatmosjersey.war. Once you have the .war file, deploy it into glassfish as usual, then visit the
application’s url, for instance http://localhost:8080/isoatmosjersey/

You should see a screen like this, with stock quotes changing dynamically:

Name Symbol Last Change Cpen DayHigh DayLow

Electronic Arts Inc. ERTS 17.81 -0.04 17.52 17.82 17.78
Intel Corporation INTC 21.73 -0.09 21.50 21.82 21.42
Broadcom Corporation BRCM 4222 -0.08 4535 45.35 4212
Microsoft Corporation MSFT 27.81 0.01 27.58 28.08 27.86
Cisco Systems, Inc. C3CO 21.64 0.06 2117 21.87 21.02
NVIDIA Corporation NWDA 2544 -0.06 2599 25.99 2512
Micren Technology, Inc. ru 11.03 -0.00 10.80 11.05 10.69
Applied Materials, Inc. aar [.0.05 16.22 16.48 18.32
Oracle Corporation ORCL 3320 -0.07 33.40 3338 33.04
Dell Inc. DELL 13.72 0.02 13.45 13.77 13.41

In case you want to test it from command line, using codeserver, you can just execute this from the uncompressed folder:

$ mvn package gwt:run

Once the codeserver application opens, you can navigate to http://127.0.0.1:8888/indexSD.html

http://localhost:8080/isoatmosjersey/
http://127.0.0.1:8888/indexSD.html

